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Summary 
The normal probability law of random quantities takes a central place both in classical mathematical statistics, and 
in practical applications. Completeness of the theoretical research relating the normal law, and also its rather 
simple mathematical properties make it the most attractive and convenient in application. Even in case of a 
diversion of explored experimental data from its normal law often it is possible to use as the first count stage; thus 
quite often it appears, that from the point of view of specific goals similar approach gives satisfactory results. In the 
article the examples of such use of the normal law gained on the basis of processing major data file of a statistical 
modelling of automatic landing of airplanes, conducted at Moscow institute of electromecanics and automatics with 
the purpose of affirming of demands in safety of landing to airworthiness standards are given. 
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1. INTRODUCTION  
 
At realization of a statistical modelling of automatic landing of airplanes empirical probability laws 
of such characteristics determining safety of landing as distance of a tangency (distance of tangency 
point an airplane of a flight strip (runway) from its beginning), a vertical velocity of touchdown, a 
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lateral deviation from a runway center line, bank angles and a pitch were under construction. The 
example of a distribution law of distance of a tangency is given in Figure 1. 
 

 
 

Figure 1. The distribution law of distance of a tangency of an airplane AN-148 
 
As well-known, the empirical probability law of a random quantity x  is determined by expressions 
[1]: 
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Where: 

(1) (2) ( )... nx x x≤ ≤ ≤  - variational series, 

( )x i  - the ordinal statistics, 

n - a sample size. 
 

In such form "tails" of allocation are cut off, т. е. Between (1)x  the share of allocation, equal to one 

also ( )nx is concluded, whence follows, that at any sample size the quantile of allocation matching as 

much as high probability can be discovered. Even intuitively it is clear, that precision of such 
estimation at a small sample size is small. 
 

However in problems of the analysis of demands to safety us tails of allocations, т interest. To. 
Thus maximum permissible risks constitute 10-6÷10-8.  
 

Therefore at build-up of an empirical distribution law other form at which tails are not cut off [2] is 
used, namely the empirical distribution law of a random quantity x  is determined by assemblage 

( )( , )i ix p where the ordinal statistics ( )ix  is a unbiased estimator of a quantile 
iPx  at 

1i

i
p

n
=

+
. We 
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shall note, that the interval of discretization ( 1) ( )[ ]i ix x+ −  is a random quantity, and the share of 

allocation 1i i ip p p+∆ = − concluded in each interval, is constant and equal 
1

1ip
n

∆ =
+

. Except for 

that: 1

1

1
p

n
=

+
; 

1n

n
p

n
=

+
; (0)x = −∞ ; ( 1)nx + = +∞ ; 0 0p = ; 1 1np + = , i.e. tails of allocation are not 

cut off.  
 

For greater obviousness and comparison with a normal distribution law it is necessary to select 
gauge on an abscissa axis. As gauge the value of inverse function of the normal distribution, 

matching probability 
1i

i
p

n
=

+
is selected. 

 

By such selection the gaussian law of probabilities will represent a straight line transiting at 
0.5ip =  through an ensemble average with a declination, determined by a variance (Figure.2) 

 

 
 

Figure 2. The distribution law of distance of a tangency of an airplane AN-148 
 in new coordinate system 

 
In Figure 2 it is visible, that the mean part in the interval probabilities (0,05÷0,95) practically 
coincides with a normal distribution law, and tail parts considerably deviate normality. 

 
2. PRECISION OF AN ESTIMATION OF A QUANTILE OF ALLOCATION 
 
In problems of an estimation a compliance with requirements of safety we  are interested in a 

quantile ipx  precision estimation or at a preset value of ( )ix precision of an estimation of matching 

probability ip . The solution of this problem can be gained from the theory of ordinal statistics. 
 

The distribution function of r-th ordinal statistics is determined as: 

( ) ( ){ }xxxF rr ≤= Pr  = Probability {at least r of ( )ix is less or equated x } = ( )[1 ( )]
n

i i n i
n

i r

C P x P x −

=

−∑  , 

i.e. featured by a binomial distribution,  
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Where: 

( )
!

! !
i
n

n
C

i n i
=

−
; ( )P x - the true distribution law of a random quantity x . 

 

The binomial totals are related to an incomplete beta function a ratio:  
 

( )( ) ( , 1)r p xF x I r n r= − + , 

Where an incomplete beta function: 

1
( )

0

1
(1 )

( , 1)

p
r n r

p xI t t dt
B r n r

− −= −
− + ∫ ; 

Beta function: 
1

1

0

( , 1) (1 ) , 0; 0r n rB r n r t t dt r n r− −− + = − > − >∫ . 

 

Tables of an incomplete beta function are present, for example in [3], however their volume is 
obviously insufficient for our problems. Therefore the program has been developed, allowing to 
evaluate necessary values of a beta function. 
 

On the basis of a binomial distribution confidence bounds of an estimation ip  can be determined. 
 

As a matter of convenience the subsequent analysis we shall inlet a label d=n-r. At d=0 the 
maximal ordinal statistics ( )nx is considered, at d=1 - a statistics ( 1)nx −  , etc. 

Then ( )
0

( ) ( )[1 ( )] [ , ( ), ]
d

i n i i
r n d x n i

i

F x F C P x P x B n P x d−
−

=

= = − =∑ , and values of the lower and upper 

confidence bounds are determined from equations of Clopper-Pearson [3]: 
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- confidential probability. 

 

In practice of statistical research normal approximation of a binomial distribution is widely used, 
thus it is considered, that this approximation yields good results in a mean part of a probability 
distribution and it is essential more the poor in tail parts. 
 

Let's carry out a research: 
 

• fluctuation of breadth of a confidence interval with magnification of the order d; 
• fluctuation of symmetry of confidence bounds; 
• comparison of precise confidence bounds with the boundaries gained at normal approximation 
 

Let n=1000; 1 2 0.95γ γ= = . Using tables [3], we shall gain the results tabulated in Table 1. 
 

Table 1. Tabulated results 
 

d p̂  
нp  вp  в нp p p∆ = −  ˆ

н нp p p∆ = −  ˆ
в вp p p∆ = −  

1 0.998 0.995265 0.999949 0.004684 -0.0027 0.002 
100 0.899 0.883008 0.915215 0.0322 -0.0161 0.0161 

 

Thus, with magnification of the order d, the confidence interval is dilated, however becomes 
more symmetrical concerning an estimation p̂ . Asymmetry of a confidence interval is subzero. 
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For transition from an estimation ˆip  to an estimation of a quantile( )ˆ ix , we shall use a procedure 

given in [2]. We read out from statistics ( )n dx −  number of steps, at which value ( )H нn dp p− −∆ =  (or) 

( )в вn dp p− −∆ = . At normal approximation this number of steps is calculated by formula 

1
2

ˆ ˆ(1 )i iiU n p pγ+∆ = ⋅ ⋅ ⋅ −  and the - quantile of a standard normal distribution is rounded off up to an 

integer 1

2

U γ+ . Matching values ( )n dx − ±∆  also will be confidence bounds for a quantile ( )n dx − . Results 

of calculations for a viewed Example are tabulated in Table 2. 
 

Table 2. Results of calculations for a viewed example 
 

d ∆H binominal ∆H= ∆В= ∆ normal ∆В binominal 
1 3 ±1,64·1,41 = ±2,325 ≈ ±3  

100 16 1,64·9,52 = 15,6 ≈ 16 16 
 

Thus, in view of a necessary rounding off the precise and approximate boundaries coincide. 
 

Let's note, that at d=1 to read out three steps aside magnifications of probability it is not possible, 
since the following ordinal statistics at d=0 loses only on one step. 
 

In this and similar cases we shall use an assumption given in [2] about normal distribution law of 
quantiles ( )n dx −  provided that the matching estimation ( )n dp −   it is not equal to null or one, that is 

always executed at the received expedient of build-up of an empirical distribution law 

( 1 ( )

1
0; 1

1 1n

n
p p

n n
= ≠ = ≠

+ +
). For a symmetrical normal distribution law we shall discover a 

difference ( ) ( )H n d n dx x− − −∆∆ = −  and we shall add it to an estimation of a quantile ( )n dx − . 
 

Example 1. For affirming demands to the maximal admissible distance of a tangency of an AN-148 
airplane - 832 meters with probability 0,999999 had been conducted a statistical modelling by a 
volume n=1000000; thus the maximal value of distance has constituted х (n) =814.9м, and 

probabilities - p (n) =
1000000

0.999999
1000001

= . 
 

Precise lower confidence bound Pн for probability P (n) is determined by formula n
нP 1 γ= −  and 

constitutes at 0.9γ =  pн=0.999997. To this value there matches value of probability ( n 2 )

999998
P

1000001− =  

and value of a quantile ( 2)nx − =802,39. 
 

At normal approximation we shall gain 1.64 1000000*0.999999(1 0.999999) 1.64H∆ = − ≈ . 

Rounding off up to H∆ =2, we gain the same values, as at precise calculation. 
 

The upper confidence bound of a quantile х (n) will constitute (814,9-802,39) +814,9=827,41 m. 
 

The value of a quantile х (n+2) at magnification of a sample size up to n=1300000 has constituted 
828.12 m, i.e. a lapse of the prognosis less 1 m. 
 

Thus, demands to safety of landing on distance are confirmed. 
 

The assumption about normality of allocation of the maximal value of sample makes experts doubt 
and requires additional research. 
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3. EXAMINATION OF NORMALITY OF ALLOCATION 
 
Examination of normality of a probability distribution of the maximal ordinal statistics х (n) at n = 

610  has been combined with a problem analytical the exposition of not observable tails of 
allocations on an example of the analysis of the maximal distance of the tangency, a bottleneck of 
automatic landing of an airplane AN-148 being most. 
 

Considering, that at improvement of control laws it is necessary to carry out about ten adjustments, 
the method of a rapid analysis is necessary. The method should allow not to conduct a total storage 
of a statistical modelling to make the solution on overgrowth of a volume of model operation with 
the purpose of affirming of demands to safety, or on necessity of adjustments of a control law. Such 
mathematical method is offered in [4]: for the analytical exposition of the right tail of allocation of 
distance of a tangency it is offered to use the allocation of Pareto featuring a probability distribution 
of a random quantity, greater some fixed value C0 

( )
α








−=
x

C
xFPareto

01 , At 0x С≥ .                                                               ( 1 ) 

 

Allocation of Pareto more simple, does not require integration, and its analytic form allows to yield 
an estimation of precision of calculated values. 

For example, α is determined by a method of moments 
2

1
ˆ 1 1

V̂
α  = + +  

 
,  

Where: 

( )22

1 1

1 1ˆ ; ;
1

yc ycn n

i i
i iyc yc

S
V x x S x x

x n n= =

= = = −
−∑ ∑ . 

The degree of truncation of initial allocation is equal 
1+

−
=

sample

truncatedsample
truncated n

nn
F , where truncatedn -

number of measurings in an explored tail part. 
 

The coordination of allocation of Pareto with the truncated initial allocation was yielded by 
formula: 
 

( ) truncatedtruncatedPareto FFFF +−= 1 .  
 

Predicted on 
610 value of distance хпр was determined on allocation of Pareto 

truncated

truncated
Pareto F

F
F

−
−=

1

999999,0
, whence from (1) it is calculated хпр. 

 

Parameter of truncation С0 and therefore nус were selected from a requirement of the maximal 

coincidence experimental xэ and calculated values xр, determined of (1) at ( )
1+

=
truncated

truncated
Pareto n

n
xF . 

 

Example 2. Approximation of a tail part of allocation of distance of a tangency by allocation of 
Pareto. 
 

ntruncated = 20; С0 = 800 m; nsample = 300000; x =828,765 m; S = 22,87 m; α =37,25. 

99993,0
300001

20300000 =−=truncatedF . 
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9525381,0
21

20 ==ParetoF  

xр = 867,96 m; хэ = 869,9 m; хпр. = 896,9 m. 
 

Example 3. A research of probability law of final value of distance of a tangency. Samples of a 
building up volume 

33 * 350 10⋅ 33 * 600 10⋅ , 
63 10⋅  for some intermediate version of a control system 

were explored. 
 

On 9 values the calculated mean value and mean-square deviation, equal 877,32прx = m were 

found; S=17,1 m. 
 

The mean calculated value was compared to the mean experimental value gained on three samples 
610 . 

 

875,3экс прx м x= <  
 

The difference between 
прx  and 

экс
x  was 2 m, that has shown a capability and expediency of 

exposition of a tangency distance allocation tail part by an allocation of Pareto. 
 

Further examination of normality of predictable values according to GOST R ISO 5479-2002 on the 
basis of Shapiro-Wilke criterion was carried out. The criterion allowed to detect a diversion from 
normality even at small sample sizes. 
 

According to this criterion statistics were calculated: 
 

( )22

1

2956,78
n

i
i

S x x
=

= − =∑  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 31 1 2 2 3 3 4[ ] [ ] [ ] [ ] 52.9n n n nn n n nb a x x a x x a x x a x x− − −− − −= − + − + − + − = , 
 

Where coefficients na , 1na − , 2na − , 3na −  were selected from the table given in the indicated standard 

and equated: na =0,6058; 1na − =0,3164; 2na − =0,1743; 3na − =0,0561. The statistics of criterion 
2

2

2734.287
0.925

2956.78

b
W

S
= = =   was evaluated and compared to the critical values also given in the 

standard at various values n and a confidence level α. 
 

At W<Wα probability of the fact that a sample is taken from the set meted under the normal law, 
constitutes α. Routinely the α confidence level is selected α=0,05÷0,1. In a viewed case value W 
exceeds Tabular value W0,1=0.859, however it is a little bit less W0,5=0.935. Thus, with enough high 
probability ≈0,5 sample of predictable values can be featured by normal probability law. 
 

In conclusion we shall calculate the maximal value of distance of the tangency, compatible to the 
received statistical model. 
 

According to Thompson's [5] criterion, measuring ix is considered belonging the sample extracted 

from set with a normal distribution of probabilities if the inequality ( )2ix x
W n

S α
−

≤ −  is executed, 

where ( )2

1

1 n

i
i

S x x
n =

= −∑ . 

 

By selection α=0,1 W0,1(7)=1.647 and the greatest expected value ix  constitutes 

877,32+1,647*17,09=905,467 m, i.e. practically coincides with the maximal predicted value 
905,514 m, that also confirms adequacy of the offered analytical exposition. 
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In Conclusion let’s note, that the viewed intermediate version of control does not ensure a desired 
value of distance of a tangency, and was used only for the analysis of a capability of the analytical 
exposition of a tail of allocation of distance, thus parameters of an initial full distribution law have 
constituted: x = 433,2m; S=57.2m. 
 

The conducted adjustments of a control law have allowed to reduce both the mathematical 
exposition, and a root-mean-square diversion up to values x = 400,7; S=40,3m, that has ensured 
affirming demands to distance of a tangency (an Example 1). 
 

Besides allocation of Pareto the capability of the exposition of tails of allocations of probability was 
explored by the normal and truncated normal distribution. 
 
4. USE OF THE NORMAL AND TRUNCATED NORMAL DISTRIBUTION LAW 
 
It is known, that at truncation at the left the ensemble average and a variance of the initial normal 
and truncated allocations are interlinked by the ratio: 

2
2 2 0

2

;

1 ,

yc

yc

Z
m m

F

m CZ Z

F F

σ

σ σ
σ

= +

 −  = − −   
                                                      ( 2 ) 

Where 0 0; 1
C m C m

Z Fϕ
σ σ
− −   = = − Φ   

   
 - are the values of density and function of a normal 

distribution of probabilities [1]. As we have values of the empirical distribution law, matching 
calculations are simple enough. 
 

Example 4. Approximation of a tail part of allocation of distance of a tangency truncated normal 
and normal allocations. 
 

ntruncated =20; С0 = х (1) = 801,811 m; x=828,765 m; S = 22,87 m; 
1

0, 0476;
21

1 0, 9524;

Φ = =

− Φ =

 

0 1, 669; 0, 099
C m

ϕ
σ

−
= − = ; 

m33,25=σ ; mm 13,826= . 
 

The calculated value хр = m + 1,669σ = 868,4 m, that practically coincides both with experimental 
value (867,98 m), and with a calculated value at approximation by allocation of Pareto (869,9 m). 
 

Disregarding truncation of a normal distribution we shall gain a calculated value: 
  

хр = 828,765 + 1,669·22,87= 866,93 m, i.e. also we have good coincidence experimental value.  
 

And, in conclusion, we shall calculate predicted value for U0.999999 with allowance for and 
disregarding truncation. 
 

хпр ус = 826,13 + 2,189·25,33= 881,58 m. 
хпр = 828,765 + 2,189·22,87= 878,83 m. 
 

More stringently at determination of computational and predictable values at a small sample size it 
is necessary to use not quantiles of a normal distribution, and quantile of a Student's distribution.  
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Then the predicted value disregarding truncation is determined, as: 
 

хпр = 828,765 + 2,4·22,87= 883,6 m that is a little bit better, than at approximation by allocation of 
Pareto. 
 

However, as approximation by allocation of Pareto gives "overestimate", and approximation by a 
normal distribution - "underestimation", use of allocation of Pareto is more preferable, since ensures 
some warranty of the gained results. 

 
5. CONCLUSION 
 
Thus, the assumption about normality of some distribution laws though is the confidant in the 
theoretical plot, however allows to solve simply enough a variety of practical problems, namely to 
create an effective method of a rapid analysis of demands to safety during improvement of 
automatic landing systems of airplanes by results of a statistical modelling of the limited volume 
and to yield a final estimation of conformity of these demands to airworthiness standards. 

For additional demonstrating the achieved results in the end of an optimization it was 
possible to apply the stringent method regulated in Unified West-European airworthiness standards 
"fits - does not fit", however the necessary sample size for this purpose should three times exceed 
the volume recommended in the given research. 
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