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Summary

On the basis of the analysis of empirical functions of allocations of the basic characteristic determining safety of
automatic landing of airplanes, the original method of their mathematical exposition with use of piecewise
approximation of their tail partsis offered. The method allows to conduct an extrapolation on unobservable tails of
allocations and to carry out a rapid analysis of an estimation of conformity on the limited volume of statistical tests
at improvement of automatic landing systems.

Key words: The automatic landing system of an airplane, demands to safety, approximation of probability law.

1. INTRODUCTION

At certification of automatic landing systems th&timation of a level of safety of automatic
touchdown of an airplane is required. This probleam be solved, if demands to precision to
characteristics of a condition of automatic landamgprobability of intolerable errors of controkar
satisfied.

17



It should be shown, that characteristics of touehrtlare those, that the exit for limits of any of th
limitations given in Table 1 is quite an improbaldgent if variable factors are subject to
distribution laws expected for them and also whee of them receives maximum permissible
value while the remaining are subject to desireglaf allocation.

Table 1. Demands to maximum permissible characteristics of automatic landing systems of some
trunk-route airplanes

Characteristics Dispersion of The Lateral | The Vertical | Pitch angle Bank angle The Slij
tangency deviation of a velocity angle
points along a| primary strut (modulo)
surface of of a landing
runway gear from a
(distance of a| center line of
tangency) runway
Probabilities of 10° 10° 10° 10° 10° 10°
overflow
1-Rqpr (0N the
average)
Probabilities of 10° 10° 10° 10° 107 10°
overflow
1-Rypr (in marginal)

Demands should be confirmed with the given contidémprobability In mathematical statement
the problem of affirming of demands in such probsii¢ form is reduced to a problem of build-up
of a tolerance interval:

P{IAB f(x)dx 2 Rsac)} =y

Where F(®) - an elementary probability law of the explore@di@cteristic [1].

Discriminate parametric and nonparametric tolerantgvals. A nonparametric tolerance interval,
not dependent on a distribution law, gain by seect

A= X, B=Xg Xo X

) Where (0 7 - grdinal statistics.

For universality of this interval it is necessatg pay" in great volume of the sample securing the
given share of allocation3gn, being between r-th and s-th values of the ramkedsurings of the
characteristic.

So the one-sided nonparametric tolerance intesvdetermined by expressid?a:ﬂ sl-y , whence
at Rsax = 0,999999= 0,9 it is had n = 2302585.

Considering, that at improvement of control lawssinecessary to make some tens of iterations,
even at capabilities of the modern computing maalyito implement such volume of mathematical
model operation inconveniently. Making the matheocahtmethod for a rapid analysis with use of
more "economical" parametric tolerance intervalesessary. Really, at a known kind of a density

function of probability F(®) on the basis of a statistical modelling it is egiouo determine

estimations of an ensemble average m and variaficedich as practice of model operation has
shown, already at n = 30000 practically have ndissigal dispersion. ThenA=m+ko

B=m-ko  where the quantil§ = K(Rsa9) _ depends on a kind of allocation.
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Knowing a kind and parameters of a distribution lafmthe explored characteristic, it is easy to
execute an extrapolation on unobservable tailsllotations. However in practice of unknown
persons are not only the moments, but also a Kiaddastribution law.

Matching of a theoretical kind of a distributionMaon experimental data is most a challenge of
mathematical statistics. The methods grounded erofisets of allocations of the Pearson (Pearson
K.), the Johnson (Johnson N. L.) and some serie3] [@e most known. Cramer's research (Cramer
H.) [2] have shown that the use of applicationeries for the exposition of "tails" of allocatiorss
inexpedient, since can lead to obtaining of theatieg probabilities.

Build-up of allocations from sets of Pearson antindon is grounded on use of the first four
moments and allows to gain matching densities obgbilities, thus the subsequent integration
necessary for determination of a tolerance intersaklated to some computational difficulties.

Naturally there is a problem, whether it is impbgsito select analytical relations at once to a
distribution law? Such approach has been develbgddV. Burr and M.A. Hatke and based upon
equaling of the cumulative moments to the theaaséti@alues expressed in terms of parameters of
allocations [3]. The method is complex enough aad hot discovered operational use. Other
method of "adjustment” of analytical relations e texperimental data, developed by H.S. Sichel
and consisting in equaling the theoretical and eiggi probabilistic moments, also has not
discovered wide application.

All the listed methods allow to approximate expetal data such mathematical expressions
which are spread to unobservable values of randaantgies. Other approach at which
"adjustment” implements only in that interval wheleserved data is disposed is possible also, thus
some "truncated" allocations are used.

The original approach offered in the article repregs evolution of last idea with the purpose of an
extrapolation of the gained results on unobservdile of allocations.

2. THE LOGICAL JUSTIFICATION OF THE APPROACH

The logical justification of the given approach swits in the following:

1. The Input information is formed by empirical @ions of allocations. Function of a normal
distribution law in the matching gauge represengdraight line (figures 1-5). For more detailed
pictorial viewing of the so-called “tailst is desirable to conduct a non-linear tensiomglan axis

of probability, i.e. to map an interval of probatigls (0,1) in an interval ¢e,+c). Operation of a
tension of such type can be executed by many eepedilf for operation of a tension to select
function, inverse to a standard normal distributioen in case the empirical distribution matches to
a normal distribution, the chart of an empiricastdbution will have a straight-line appearance.
Therefore on charts of distribution functions ofpkxed characteristics of automatic landing
diversions from normality in tails of allocationsn{ike bar graphs of elementary probability laws -
figures 6-10) are visible. The analysis of functiaf allocations is applied also at model operation
of automatic landing an airplane Boeing 757/767 [4]

2. From viewing distribution functions follows, thim a central part (probability 0,01+0,98o0d
coincidence the normal law is observed, and dieessirom normality begin in tails of allocations.
This fact can be given an engineering justificatithre automatic landing system of an airplane is
non-linear and at greater diversions of random ofacteffecting it from their mean these
nonlinearities are manifested also distribution daaccordingly vary. Thus, in all range of
fluctuation of characteristics unlike classical mggehes it is impossible to use any one distriloutio
law, but only some combination of various laws.
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Figure 1. The distribution function of distance of tangency Dxac (N=2,3/10°
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Figure 2 - the Distribution function of a vertical velocity (Vy) on a tangency (N=2,30°)
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Figure 3. The distribution function of bank angle ( ¥) on a tangency (N=2,3/10°
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Figure 4. The distribution function of a lateral deviation (Z) on a tangency (N=2,3/10°
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Figure 5. The distribution function of an angle of drift (YS) on a tangency N=2,3/10°
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Figure 6. The bar graph of distances of a tangency (meters) by results of model operation of
automatic landing AN-148 on a Monte-Carlo method (N=2,3/10°
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Figure 7. The bar graph of a vertical velocity (m\s) by results of model operation
of automatic landing AN-148 on a Monte-Carlo method (N=2,3/10°)

250

200 -

180+

100 -

a0

Figure 8. The bar graph of bank angle (deg) by results of model operation
of automatic landing AN-148 on a Monte-Carlo method (N=2,3/10°)

300

280 -

200 -

150 +

100+

a0 -

Figure 9. The bar graph of a lateral deviation (meters) by results of model
operation of automatic landing AN-148 on a Monte-Carlo method (N=2,3/10°



Figure 10. The bar graph of an angle of drift (deg) by results of model operation
of automatic landing AN-148 (N=2,3/0°

3. For approximation of tails of allocation the ioais laws limited at the left (if necessary
limitations modules on the right are considered) lba selected. Thus matching of this or that law
is stringently individual for each separate chaastic and each type of aircraft [5].

4. From the theory of interpolation it is known,aththe interval of interpolation less, the
coincidence data points is better. As for the smfutof a problem of an extrapolation on
unobservable tails of allocations us the exposigball distribution function but only initial ots
final part, selection of a volume of the ranked pernecessary for approximation needs to be
yielded from a requirement of the compromise betwprecision of statistical estimations of the
moments of a selected parent distribution and pi@tiof interpolation does not interest.

By way of illustration results of approximation tbie right tail of a distribution function of distem
of a tangency are given in the offered approactherbasis of mate of a normal distribution with
allocation of Pareto [6,7].

3. USE OF ALLOCATION OF PARETO

Allocation of Pareto, features allocation of a ramdqguantity, greater (smaller) some fixed value
G

Allocation of Pareto looks like:

F(x)= 1-(&)a
X

At x=C,

with an ensemble average
a
M|x]|=——C,
=",
and a variance

D[X] :#Cé
(a-17%*(@-2)

23



Estimation a method of moments of single param@tés the estimation:
2
a=1+,[1+ (i)
\%

Gained by equaling of the theoretical and empimeaients, where an estimation of coefficient of
a variation:

— S _ 1 n 2 1 0 < \2
V=—; X==)x S "=——)> (X —X
i n ; )g n _1 i=1 ( )
The degree of truncation is equal:
F - n@blﬁapku - nyc — nyc

yc Iapemo —
n@hlﬂopxu +1 at nyc +1

where
nyc - Number of measurings in an explored tail part.

The coordination of allocation of Pareto with thenicated initial allocation is yielded by formula:
F = Fppen (1-F o )+ Fye

Iapemo

In Table 2 results of approximation of a unobselwdtail" part of one of versions of distance of a
tangency of an airplane AN-148 of a flight strig @iven.

Table 2. Results of approximation of distance of a tangency allocation of Pareto (Ng,,. = 3M10°)
nyc CO X S C,)\’ Dmax DQKC. D forecast Dexp.
calc. na N =10° n=10°
141 | 730m. | 763,44u. | 316m. | 2572 890Qm. 869,9m. 932wm. 889,6Mm.
20 | 800m. | 828,765u. | 22,87w. | 37,25 | 867,961 | 869,9w. 896,9u. 889,6wm.

4. CONCLUSION

Thus, the use of Pareto allocation for interpolatid observable and an extrapolation unobservable
"tail"* parts of a probability distribution is ond the most difficult touchdown safety indicatorsdan
yields precise enough results. It can be recomneefatenther safety indicators with the purpose of
making of the unified conformity affirmation proag@ of maximum permissible risk at automatic
landing of airplanes to standards of flight valdit
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