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Summary 
The paper contains a consideration of the specifics, arising when operating on large sample volumes (n = 100 000 ÷ 
1 000 000), obtained during statistical simulation of ICAO Cat. III aircraft automatic landing safety assessment 
problems and gives out recommendations on the necessary number of statistical tests justification and the 
probabilistic safety figures estimation procedures building. 
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Air safety is the priority parameter of the air vehicles quality. Especially rigid requirements are 
applied to the performance, affecting safety in the process of the aircraft automatic landing. So 
Russian and foreign regulatory documents [1, 2, 3] specify performance requirements for the 
Category III automatic landing accuracy.  
 

It is necessary to show that landing characteristics are such that the exceedance of any limit given 
below is improbable (P=10-5 ÷ 10-8) if variable factors follow the expected distribution laws 
(average) and also when one of them takes maximum acceptable value (limited) while all the others 
follow the expected distribution laws (Table 1). 
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Thus these requirements are given in a probabilistic form, with the maximum acceptable risk 
varying in 10-5-10-8 range. Confirmation of such low probabilities is possible at the statistical 
simulation phase only. The only method specified in West European Joined Airworthiness 
Requirements (JARs) is the nonparametric "pass-no-pass" approach, based on using of minimum 
information. 
 

Table 1. The requirements for maximum acceptable performance of some long-range aircraft 
               utomatic landing systems, whether the performance under study is in or out of tolerance 
 

Performance 
 

Touchdown 
distance 

Lateral deviation 
from runway 

centerline 

Vertical 
speed 
(mod.) 

Pitch 
angle 

Bank 
angle 

Gliding 
angle 

1-Rdr* Exceedance 
probabilities 
(average)  

 
10-6 

 
10-6 

 
10-6 

 
10-6 

 
10-8 

 
10-6 

1-Rdr* Exceedance 
probabilities 
(limited) 

 
10-5 

 
10-5 

 
10-5 

 
10-5 

 
10-7 

 
10-5 

*dr – desired 
 

The method is based on the binomial probabilities distribution: 
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where 1 – R - estimated risk; d - number of failures (out of tolerance); n – sample volume; and R – 
parameter confidence limits, defined according to Klopper-Pearson's equations: 
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1 2γ +γ 1 γ− = - confidence belief, 

where RL – lower confidence contour, RU – upper confidence contour. 
 

The decision rule is drR R≥L  , where Rdr is the desired value, defines the system acceptance and the 

rule U drR R≤  - it’s rejection. From the confidence limits definition and expressions analysis it 

comes out that the events r d≤  and 1r d> −  with the true value drtrueR R=  are improbable, i.e. a 

system can be accepted if drtrueR R= , and it can be rejected if drtrueR R= . 
 

An additional point is that this method, using minimum possible information, features the most 
broad confidence interval, therefore it requires an extremely large sample volume for the R 
parameter assessment with the adequate statistical accuracy, or acceptance of verifiable hypothesis 
for this parameter value with sufficient certainty. 
Thus with dr 0 999999R .=  (risk 61 10R −− = ), the sample volume is n = 2302585. The necessary 

amount of statistical simulation is impossible and the simulation costs are unreasonable, taking into 
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account that in the process of automatic landing control algorithms execution, over 10 iterations are 
performed. 
 

As an alternative to a nonparametric approach, a parametric approach is suggested, based on the 
empirical functions probabilities distribution analysis of the performance under study (touchdown 
distance in the process of landing, vertical speed, bank and pitch angles, lateral deviation from the 
runway center line) and also on these laws approximation with some analytical expressions. A 
number of authors works show that in view of automatic landing systems nonlinearity, the use of 
certain approximation methods (Pearson, Johnson, Series families distributions) does not allow to 
build up an approximation with adequate accuracy [4, 5]. Therefore the new approach, taking into 
account the possible "discord" of these performance probabilities distribution laws is suggested. 
Three versions of combined distribution laws are considered: the Pareto distribution for description 
of the distribution laws "tail" parts, the distributions mixture and spline functions. 
 

Use of the Pareto distribution. The logic justification of this approach is as follows: the empirical 
distribution functions provide source data. The normally distributed function in the proper scale*1 
represents straight line (Figure 1-4). Therefore the deviations from normality in distributions "tails" 
(in contrast to the probability density histograms) can be seen on the distribution function graphs of 
the automatic landing performance under study. 
 

 
 

Figure 1. Touchdown distance (Dtd); Distribution function (N=2.3⋅106) 

                                                 
1* It is desirable to carry out the nonlinear extension along the probability axis, i.e. to display probability interval (0.1) 
in the (-∞, +∞) interval for more detailed schematic analysis of what is known as "tails". This type of extension 
operation can be performed in many ways. If the standard normal distribution inverse function is selected for the 
extension operation, then, in case the empirical distribution corresponds to normal distribution, the empirical 
distribution diagram will be rectilinear. 
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Figure 2. Touchdown vertical speed (Vy); Distribution function (N=2.3⋅106) 
 

 
 

Figure 3. Touchdown bank angle (γ); Distribution function (N=2.3⋅106) 
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Figure 4. Touchdown lateral deviation (Z); Distribution function  (N=2.3⋅106) 
 
The distribution functions analysis was also applied in the process of Boeing 757/767 automatic 
landing simulation. 
 

It is known from the theory of interpolation that the less is the interpolation interval the better is the 
fit to the test points. As we are not interested in the whole distribution function description, but only 
in the initial or final part of it, to solve the problem of the extrapolation to unobservable 
distributions "tails", the ordered sample volume selection, necessary for approximation, should be 
done with regard to the compromise between the accuracy of the selected population statistical 
estimations and the interpolation accuracy. 
 

Pareto Distribution approximates a random variable distribution, larger (smaller) then some fixed 
value 0C . 
 

The Pareto distribution is as follows: 
 

0
Pareto 0( ) 1 for

α
 = − ≥ 
 

C
F x x C

x
 

The single α  parameter moment method estimation is 
2

1
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coefficient of variation (CV) is 
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c

sample 1
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F

n

−
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+
, where c – conditional, cn −  number of 

measurements in the explored "tail" part. 



 58 

Matching of the Pareto distribution with the truncated initial distribution is performed from the 
formula ( )Pareto c c1F F F F= ⋅ − + . 
 

A prediction for unobservable "tails" of the explored parameters probability distributions can be 
performed on the basis of the Pareto distribution. Thus, for example, for F = 0.999999 we will 
determine ParetoF  as: 
 

c
Pareto

c

0,999999

1

F
F

F

−=
−  

 

By substituting the resulting value into the Pareto distribution function formula, we will find the 
predicted value: 
   

0 Pareto
pr

ln ln(1 )
ln

C F
x

α
α

− −= , 

 

where pr – predicted. 
 

Use of the mixture distribution. Mixtures of distributions were used in Japan, Western Europe and 
the USA in solving problems of the airplanes vertical separation safety conformance verification. 
The two normal mixture distributions parameters selection for the Il-96 aircraft Cat. IIIA landing 
distance verification problem are resulted in [5]. Thus the mixture parameters were selected by the 
combinatorial method on account of the empirical and theoretical moments equality condition. 
 

The report offers a more general mixture parameters selection method based on the maximum 
empirical and theoretical probabilities distribution laws coincidence. 
 

The normal distribution laws mixture ( ) ( )( )
1

K

A i i
k

F x qN x - m /σ
=

=∑  with normal law parameters 

{ }i i im , ,qσ  - mathematical expectations, root-mean-square deviations and weighting factors (prior 

probabilities), when 
K

i
k 1

q 1
=

=∑ , where А is approximation and K is mixture components number 

selected experimentally, that is used  as the basis for the parametric approximation. 
 

The mixture distribution-based parametric approximation is selected by the least-squares functional 
minimization of the empirical distribution function and the parametric approximation distribution 
function differences: 
 

{ }( ) { }
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σ

−
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2n

k k k exp i A i
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2n K

exp i k i k k
i 1 k 1

f m , ,q F ( x ) F ( x )

F ( x ) q N x m /

 

 

under condition that 
K

i
k 1

q 1
=

=∑ , where exp – experiment. 

 

The distribution function behavior at the right "tail", for example, is of most interest for Touchdown 
Distance. It has been proven experimentally that using of a two-component mixture of normal 
distributions: 
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( )( ) ( )( )1 1 2 2 2

2

= − σ + −

≤ ≤ ≤ ≤ + =
exp 1

1 1 2

F ( x ) q N x m / q N x m / q ,

0 q 1, 0 q 1, q q 1  
 

 

is sufficient for the right "tail" approximation. 
 

Thus, it is necessary to search the minimum with respect to the following 5 parameters: 

1 1 1 2 2 2 1m , ,q ,m , ,q 1 qσ σ = − . 
 

When plotting a graph, it is not the empirical distribution function that is plotted, but its 
transformation with the inverse normal distribution function. 
 

Therefore, it is suggested to change the functional, adding a transformation by the normal 

distribution inverse function ( ) ( )( )1-
AN F x . The transformation, added to the functional, increases 

the summand influence on the “tails” because of extension of "tails", i.e. the function takes the 
form: 
 

{ }( )
( ) ( )( ) ( ) ( )( ){ }

Σ σ

− −

=

=

= −∑

k k k

2n
1 1

exp i A i
i 1

f m , ,q

N F x N F x
 

 

As the points { }ix 1, ,n= …  lie in the central range more densely, the approximating curve will be 

more exact in the central range, but less exact at the "tails". Hence, this functional considers the 
empirical probability density indirectly, i.e. the approximation is performed "statistically". The 
functional fΣ  equivalent type in the integrated form - Stieltjes integral is as follows: 
 

( )
( ) ( ) ( ) ( ){ }

Σ σ σ
− −

=

= −∫ A

1 1 1 2 2 2

2
1 1

exp exp

f m , ,q ,m , ,q

N F ( x ) N F ( x ) dF
 

 

Besides the functional in the integrated form can be written as a conventional "functional": 
 

( )
( ) ( ) ( ) ( ){ }
σ σ

∫

− −

=

= −∫
n

1

1 1 1 2 2 2

x
2

1 1
exp A

x

f m , ,q ,m , ,q

N F ( x ) N F ( x ) dx
 

 

It will lead to terms influence minimization in the places, where the density of points is high. 
During trapezoidal integration, for example, in the places where the points { }ix i=1,…,n  lie more 

densely, ix∆  will be small, and, thereby, the degree of the integration element influence will 

decrease in this range. 
 

Table 2 demonstrates the agreement between Аn-148 Touchdown Distance theoretical and 
experimental distribution function basic statistical performance. The agreement between the 
moments serves as assurance of the method suggested. 
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Table 2. Agreement between Аn-148 Touchdown Distance theoretical and experimental distribution 
              function basic statistical performance 
 

Moments Number of 
tests 

Distribution 
Mathematical 
expectation 

Root-mean-
square 

Asymmetry 
exponent 

Excess 
exponent 

Experiment  400.713 40.374 ≈ 0 4.711 300 000 

Mixture 400.423 40.383 ≈ 0 4.729 

Experiment 400.720 40.317 ≈ 0 4.686 600 000 

Mixture 400.509 40.263 ≈ 0 4.775 

Experiment  400.689 40.339 ≈ 0 4.654 1 000 000 

Mixture 400.427 40.302 ≈ 0 4.703 
 
Use of the spline-approximation. We will apply the spline-approximation to the 
function ( ) ( )( )exp 1 exp

n nS x N F x−= . 
 

Let us assume, that ( )exp
n iS x  experimental function values are determined with an error in the form 

of zero mathematical expectation variable with the dispersion ( )( )S exp
i n iD D S x= . Then the 

approximating function deviation estimation ( )A
n iS x  from experimental function ( )exp

n iS x  сan be 

represented as 
 

( ) ( )( )
n 2exp A

n 1 n iS
i 1 i

1
S x S x c n

D=

− = ⋅∑
                                                                                      

( 1 ) 

 

where the c constant  is selected experimentally. 
 

A variety of approximating functions can meet this condition. The spline-function theory supposes 
that a function with the smoothness property should be selected from this variety of functions. In 
the spline-function theory, the functional of the function smoothness ( )S x  is given by the 

integrated square ( )''S x   
 

( ) ( )( )
n

1

2x

2

x x

I S S" x dx
=

= ∫
                                                                                                      

( 2 ) 

 

Thus, the approximating function ( )A
n iS x  should minimize functional (2) under condition of (1). 

When introducing the Lagrangian multiplicity λ , we will reduce the conditional minimization 
problem to the unconditional problem by two variables A

nS  and λ : 

( ) ( ) ( )( )
n 2A exp A

2 n n i n iS
i 1 i

1
I S S x S x c n

D
λ

=

 
+ ⋅ − − ⋅ 

 
∑  

For values of the experimental function ( )exp
n iS x  it is possible to indicate approximately SiD   

dispersions. 
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It is known that the experimental function spreads distribution follows the binomial law: 
 

( )exp
nF x  with ( ) ( )( )F exp exp

i n 1 n iD F x 1 F x / n= −  dispersion. 
 

When defining the S
iD  dispersion of the ( )exp

n iS x  function it is necessary to consider 

( ) ( )( )exp 1 exp
n nS x N F x−=  inverse transformation. 

 

Let's consider the transformation linear approximation: 
 

( ) ( )( ) ( )( )
( )( ) ( )

σ

σ σ

− −

−

= = + =

= + ⋅

exp 1 exp 1 true P
n i n i i i

P
1 true Pi

i i

S x N F x N F x

N F x 0 ,
dN / dt                                                               

( 3 ) 

 

where the normal distribution derivative is taken at ( )( )1- true
it N F x=  point, and trueF  - the truth 

distribution function. 

Hence, approximately 
( )

P
S i
i 2

D
D

dN / dt
= , where 

2
t / 21

dN / dt e
2π

−= . The complete expression of 

random value ( )exp
n iS x  dispersion has the following form: 
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π
π
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⋅
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true true
i iS

i
t /

t true true
i i

F x 1-F x
D

1
n e

2

2 e F x 1-F x / n
                                                                                  

( 4 ) 

 

As the truth function distribution ( )true
iF x  value is unknown, we take instead as a first 

approximation the experimental distribution function ( )exp
n iF x  value: 

 

( ) ( )( )2S t exp exp
i n i n iD 2 e F x 1-F x / nπ= ⋅ ⋅

                                                                               
( 5 ) 

 

Let's reduce the functional (3) with the fixed  parameter to the following form: 
 

( ) ( ) ( )( )2

2

n
A exp A
n n i n iS

i 1 i

1
I S S x S x

D / λ=

+ −∑
                                                                           

( 6 ) 

 

i.e. S
i ip D / λ=  

 

With the fixed λ  parameter the summand c nλ ⋅ ⋅  is also fixed, therefore it can be ignored during 
minimization. 
 

As initial information for construction of the smoothing spline-function it is necessary:  
• to set the values of arguments, in which the experimental distribution function is known,  
• to set the experimental distribution function values,  
• to define the weights, 
• to set the boundary conditions. 
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At the extremities, the distribution function ( )exp
nF x  asymptotically approaches to 0 at the left 

extremity and to 1 at the right extremity. The distribution function transformation 

( ) ( )( )1exp exp
n nS x N F x−=  tends to extension at the "tails" i.e. the "tails" flexon approaches to 0. 

 

Therefore, the zero values of the flexons ( ) ( )22 A
nd S x / dx  with 1x x=  and nx x=  are set as the 

boundary conditions. The arguments grid is not necessarily proportional, and it can be variable. 
When working with the splines the mandatory requirement is that the arguments should not have 
repeats, i.e. zero step of the grid along the argument axis is not acceptable. 
 

In this paper we use the approximating function representation through the parameters of: 

( ) ( )22 A
I n iM d S x / dx=  form: 
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x x
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The required parameters are ( )А

n iS x  and Mi. The parameters are defined from: the (6) functional 

minimization condition, ( ) ( )' 0 ' 0А А

n i n iS x S x− = +  spline-function first-order derivate continuity 

requirement and ( ) ( )0" " 0А А

n n nS x S x= =  boundary conditions. The approximation is performed 

for the empirical distribution function right "tail", beginning from the point, where the experimental 
probability itself has a reasonably good accuracy ( )exp

nF x 0.999≥ . 
 

Using the above-described procedure, the following estimations were conducted: 
• determination of the probabilities spreads dispersions,  
• transformation of the empirical distribution function with the aid of the function, that is opposite 
to the normal distribution function,  
• re-estimation of the spreads dispersion (4), 
• definition of the spline-function from (1) and (2) problems solution with the parameter c = 0,1. 
 

Table 3 demonstrates the basic statistical performance agreement between An-148 Touchdown 
Distance theoretical and experimental distribution functions. The moments agreement serves as the 
suggested method assurance. 
 

As the An-148 automatic landing statistical simulation is performed in "portions", the capability 
occurs to stop the simulation process, if required, and hence, to reduce its time and costs. 
 

Table 4 demonstrates the results of the Touchdown Distance prediction, performed using all three 
methods per 1 million of realizations. 
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Table 3. Basic statistical performance agreement between An-148 Touchdown Distance theoretical 
              and experimental distribution functions 
 

Moments Number of 
tests 

Distribution 
Mathematical 
expectation 

Root-mean-
square 

Asymmetry 
exponent 

Kurtosis 

Experiment  400.713 40.374 ≈ 0 4.711 300 000 

Splines 400.705 40.368 ≈ 0 4.686 

Experiment 400.720 40.317 ≈ 0 4.686 600 000 

Splines 400.11 40.312 ≈ 0 4.669 

Experiment  400.689 40.339 ≈ 0 4.654 1 000 000 

Splines 400.605 40.376 ≈ 0 4.631 

 

Table 4. Results of the Touchdown Distance prediction, performed using all three methods 
              per 1 million of realizations 
 

Number of 
realizations 

Approximation 
method 

Prediction 
result (m) 

Pareto 839.673 

Mixtures 857.746 

300 000 

Splines 826.03 

Pareto 830.435 

Mixtures 848.35 

600 000 

Splines 825.08 

Pareto 815.865 

Mixtures 829.842 

1 000 000 

Splines 818.67 

The experimental value per 1 million of 
realizations - 814,9 m 

 

Thus, the best approximation accuracy is provided by the Pareto distribution and the splines. In 
addition, the deviation between the results for these two methods is of small importance (max 13m), 
and it decreases with the realization volume growth. It also should be noted, that all considered 
methods give some experimental value "overestimation", providing the achieved results assurance. 
 

On the basis of approximation accuracy analysis, the two versions were chosen: the spline-functions 
and the Pareto distribution, leading to almost similar results. 
 

Spline-functions describe the random value variation distributions across the full-range, while the 
Pareto distribution describes distributions only at the bounded "tail" parts for the random values, 
which are larger (or lesser) then some certain values. Therefore the first form of the approximation 
has more credibility then the second. However, the use of the Pareto distribution enables to estimate 
the approximation accuracy analytically. Both versions were used to solve the problem of 
extrapolation on the distributions unobservable "tails", providing the rapid analysis procedure 
feasibility, which enables, without performing any comprehensive mathematical simulation, to 
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make a decision whether it is necessary to adjust the control law, or to increase the volume of the 
simulation further (Figure 5). 
 

 
Figure 5. Rapid analysis flow chart 

 
 

In the process of final selection of the control law, the single use of the «pass-no-pass» method is 
possible. 
 

The approach suggested was widely approved during the An-148 automatic landing system 
simulation. The results of the airplane flight tests have confirmed the received results. The airplane 
equipped with the САУ-148 (FCS-148) was certified for ICAO Cat. IIIa  landing. 
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