COMMUNICATIONS
IN
DEPENDABILITY AND
QUALITY
MANAGEMENT
An International Journal

CDQM, An Int. J., Volume 17, Number 1, 2014,. pel6

UDC 004.4:[517.93:519.245
ID NUMBER 207829004

Uncertainty Based Fault Removal
Phenomenon and Successive Software
Releases Planning

Ompal Singh*, Adarsh Anand', Deepti Aggrawal*
and Ljubisa Papic?

! Department of Operational Research, University of Delhi, Delhi,India

E-mail: drompalsingh@Iive.com, adarsh.anand86@gmail.com, deepti.aggrawal @gmail.com
>DQM Research Center, P. O. Box 132, 32102 Cacak, Serbia

E-Mail: dgmcenter @open.telekom.rs

accepted February 14, 2014

Summary

As the size of software system is large and the number of faults detected during the testing phase becomes large, so th
change of the number of faults that are detected and removed through each debugging becomes sufficiently smal
compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model th
software fault detection process as a stochastic process with continuous-state space. In the present article, we hav
described the fault-detection process during the testing phase of successive releases of the software by applying i
mathematical technique of stochastic differential equations (SDE) of itOtype. Logistic rate function has been chosen ti
identify and remove the faults lying dormant in the software. We have further investigated an optimal bi-criteriol
release planning for successive software releases that maximizes the reliability and minimizes the cost of testing of th
release that is to be brought into market under the dual constraints of budget and achieving a desired level ¢
reliability. Results are supplemented by a numerical example.

Key words: Successive software release planning, multi-up gradations, software reliability growth model, stochastic
differential.

1. INTRODUCTION

Firms that have upgraded their software skillfudlgapting the technological advancements into
their products and processes have not only surdvggrospered. Expanding high technology has
had a significant impact on virtually all indussieToday better known software developing
companies like Microsoft, IBM, Adobe and Wipro eaice known for their innovation strategies and

frequent introduction of an advanced version of gwtware. This successful introduction
contributes substantially to long-term financiatsess and is an effective strategy to increase
primary demand. It strengthens the competitivetmosiof the company in the market. But the risk
is formidable as for most software organizationgeeglly the development are associated with
high cost and risks. This is because upgradingftavae application is a complex task where the
upgraded and existing system may differ in the grarénce, interface and functionality etc.
although the developers upgrades the softwarederdo improve the software product, which also
includes the possibility that the upgrade versiolhworsen. The testing team is always interested
in knowing the bugs present in the software whigh decide the utility of up-graded software.
Safe up-gradation can improve the behavior of ffstesn and can preserve market for company;
however risky up-gradation can cause critical eimaystem. for example in October 2005, a glitch
in a software upgrade caused trading on_the TokgokSExchangdo shut down for most of the
day [17], in 1991 after changing three lines cada isignaling program which contained millions
lines of code, the local telephone systems in @ali& and the eastern seaboard came to stop
[5,10]. Similar gaffes have occurred from importgoivernment systems [10] to freeware the
internet. Sometimes Upgrades can worsen a proddaiser may prefer an older version.

The software failures may be due to errors, ambegji oversights or misinterpretations of the
specifications that the software is supposed tsfgatincompetence in writing code, inadequate
testing, incorrect or unexpected usage of the swéver other unforeseen problems. A plethora of
software reliability models have been developeth@literature. Goel and Okumoto [6] proposed a
SRGM, which describe the fault detection rate, a®ma homogeneous Poisson process (NHPP).
Later, based on this model, eminent researchezsvldmada [13], Pham [3] and Kapur [7, 18] etc.
after bringing some new assumptions, proposed akradiability models in the literature. The K-G
model [8, 18] can be described by following mathecaéstructure:

_abt
m(t)=a il -
1+ Be Pt)
where (1) is the cumulative number of faults removed in software by time t; a is the finite

number of fault content present in the software khe constant fault detection rate gAdis the
learning parameter.

Recently Kapur et.al [10] developed a multi up-gtamh reliability model, considering that
cumulative faults in each generation depend ompralious releases and also assumes that fault is
removed with certainty. But the proposed modelasdal on the assumption that the overall fault
removal of the new release depends on the repdatdts from the just previous release of the
software and on the faults generated due to addmme new functionalities (add-ons/up-
gradations) to the existing software system. Theegfit's not necessary to consider the faultsllof a
previous releases. This takes less time of thentegeam in comparison to test the complete
software together (i.e. all releases together).

Several NHPP based SRGMs have been developed Inettaure, treating fault detection process
during testing phase as a discrete counting pro¥eseada et. al [15] asserted that if the sizénef t
software system is large then the number of fagiécted during the testing phase becomes large
and the change of the number of faults which ateatled and removed through each debugging
activities becomes sufficiently small compared witk initial fault content at the beginning of the
testing phase [18]. Therefore, in order to desctitee stochastic behavior of the fault detection
process, a stochastic model with continuous stpéees can be used. Yamada, Nishigaki and
Kimura [15], Yamda and Tamura [16]; Lee, Kim andkPd] have studied the stochastic behavior

of fault detection process described by stochgstaress model with continuous state space.
Recently Kapur et.al [11] also proposed a SDE b#legde SRGM.

Although testing is an efficient way to detect aathove faults so as to avoid failure of a software
system, but exhaustive testing is impractical. €fare, software developers need to decide when to
stop testing the current release of the softwadecame up with up-graded version of the software
system for the customers. Software release plampmoigiems for single release software have been
discussed and solved in different ways in litet@ne of these is to find release time so that the
total cost of software testing is minimized [12, 18]. Some of the release time problems are based
upon maximizing the reliability of software. Moddlsat minimize the number of remaining faults
in the software or the failure intensity also lieder this category [6, 18]. Release time problems
have also been formulated for minimizing cost withinimum reliability requirement or
maximizing reliability subject to budgetary constta[12]. Bi-criterion release policy [18] that
simultaneously maximizes reliability and minimizesst have also been studied in literature for
single release software.

The above literature review on release plannindlpras do not take into account the impact of
coming up with successive releases of a softwamelgase planning decisions. This paper helps
answer the question of when to stop testing theentirelease of the software when we have the
dual objective of minimizing the cost and maximgitie reliability of the version that has to be

released into the market under the constraintaidgét and reliability requirement. The formulated

problem is solved using genetic algorithm.

The rest of the paper is organized as follows: Sand 2 gives the information about Notations and
assumptions used, Sec 3 enlightens the SDE basee@ling framework. In Sec 4, we have
discussed about data set and comparison critegd. Us Sec 5 bi-criterion release planning
problem is formulated and genetic algorithm is présd. Sec 6 gives numerical illustration of the
formulated problem. At last, conclusion followed Bgknowledgement and References has been
provided.

Notations

m(t): Number of faults detected during the testingetinand is a random variable.

E(m(t)) =m (t) : The mean value function or the expected numbdaulfs detected or removed
by time t.

a . Constant, representing the initial number of taying dormant in the software when the
testing starts for ith release; i=1 to 4.

a: total fault conteng=a +a,+a,+a,).

f(t): Probability density function.

F(t) . Probability distribution function.

RO Probability distribution function associatedith each Release (i=1to 4), (j=1,2).

t, : Time fori" release (i=1 to 4).

o:. Positive constant that represents the magnitdidbe irregular fluctuation for faults before
and after change point.

b,: fault removal rate per remaining faults.

i=1to 4.

B : Constant parameter describing learning in thé& famoval rate; i=1 to 4.

2. ASSUMPTIONS

The proposed model is based on SDEit0b type with following assumption:

1. The software fault detection Process is modelea st®chastic process with a continuous state
space.

2. Software is subject to failure during executionseiby faults remaining in the software.

3. Let m(t)be a random variable which presents the numberoftivare faults detected in the

software system up to testing timeThe faults detected int+At are proportional to the mean
number of faults remaining in the system.

3. SDE BASED MODELING OF UP-GRADATIONS FOR EACH RELEASE

Yamada et al [15] proposed a simplified softwargabdity growth model to describe the fault
detection process during the testing phase by appliéstype Stochastic Differential Equation
(SDE) and have compared the continuous-state spREM with the NHPP. Leet al. [1] used
SDE to represent a per-fault detection rate thebriporate an irregular fluctuation instead of an
NHPP, and consider a per-fault detection rate diepends on the testing timeRecently, Yamada
et al [16] have proposed a flexible Stochastic @dhtial Equation Model describing a fault-
detection process during the system-testing phife alistributed development environment [18].
Using the hazard rate approach in deriving the nvadure function of cumulative number of faults
removed, we have:

Let {m(t),t =0} be a random variable which represents the numbsoftware faults detected in

the software system upto testing time t. Supposé mit) takes on continuous real value. The
NHPP models have treated the software faults deteptocess in the testing phase as discrete state
space. However, if the size of the software systelarge then the number of faults detected during
the testing phase also is large and change indh#er of faults, which are corrected and removed
through each debugging, becomes small comparedthetimitial fault content at the beginning of
the testing phase. So, in order to describe thehasiic behavior of the fault detection process, we
can use a stochastic model with continuous stateessince the latent fault in the software system
are detected and eliminated during the testingghtas number of faults remaining in the software
system gradually decreases as the testing progresse

So the corresponding differential equation is gitagn

dm(t f(t
a g

It might happen that the rate is not known compyeteut subject to some random environmental
effect, so that we have:

r(t) = f(t) +"noise"

1-F(t)

let y(t) be a standard Guassian white noise antle a positive constant representing a magnitude
of the irregular fluctuations. So the above equatian be written as:

dm@):{f(ﬂ

it 1_FU)+qw0ya—m@»

The above equation can be extended to the follogtaghastic differential equation of @&otype:

dm(t) = [#(t()t)—a—;}(a— m(t))dt +o(a-m(t))dw(t)

Wherew) is a one-dimensional Wiener process, which imfily defined as an integration of the
white noisey(t) with respect to time

On applying initial condition m(0)=0; we get m(§ #llows:
m(t) =a[l- (- (F)™ "]
Using the fact that the wiener procegs) , is a Gaussian process and has the following ptiepe

Prw(0)= 0]=1,
E[w(t)] =0;
E[Wt)w(t)] =min[t,t]

the expected value is:
o

m' (t) = E(m(t)) = a[1- (1~ (F (t)))e 2] 1)
Release 1

The most important phase in the software developtifercycle is testing. Before the release of the
software in the market the software testing teaststthe software rigorously to make sure that they
remove maximum number of bugs in the software. Algh it is not possible to remove all the
bugs in the software practically. These finite nensbof bugs are then removed perfectly and
mathematical equation for it is given as under:

m (t) = ay Fy(t) o<t<ty 2)
where,
|a (1+ 131) —qn%azt
F(t) = {1 (—1+ fen e
Release 2

After first release, the company has informationwtthe reported bugs from the users, hence in
order to attract more customers, a company adde sw@aw functionality to the existing software
system. Adding some new functionality to the sofevbeads to change in the code. These new
specifications in the code lead to increase inféudt content. Now the testing team starts testing
the upgraded system, besides this the testing tessiders dependency and effect of adding new
functionalities with existing system. In this peatiovhen there are two versions of the software,
while we are in the testing phase of the Releasee2are also in the operational phase for the
Release 1, hence the leftover fault content offitis¢ version i.ea,(1- F,(t,)) interacts with new

fault detection rate i.eF,(t—t,). In addition a fraction of faults generated duestthancement of

the features also get removed with this new rate. Mathematical equation of these finite numbers
of faults removed can be given by:

mz* (t) = (&, +a,(A-F(t))F.t-t) tstst, 3)
where:
_ (1+5,) by (t-t)+ 20 (t-t;)
F(t-t)= {1—(@ e 2
Release 3

Technological changes and stiff competition forttesssoftware developer to add certain more
features to the software. Now as discussed abdnetdsting team starts testing the upgraded
system and simultaneously keeps a check on thatipeal phase of Release 2 as well. Therefore,

the leftover faults from Release 2 i.ea,(1-F,(t,—t))interact with the new fault
detection/correction ratg(t-t,) . Besides this the testing team removes the neltsfauth this

new fault detection rate for the existing systeme Tathematical equation of these finite numbers
of faults removed can be given by:

my (1) = (a, + a,(1- F,(t,~t) Ft—t,) t,<t<t, (@)
where,

_ (1+4,) ~by(t-to)+20? (t-t)
Fs(t_tz) _{1_(14-'836% e 2

The process of adding new functionalities is anoomg process. These add-ons keep on happening
till software is there in the market. On similarslsaas earlier, the mathematical equation for
Release 4 can be given as:

m4* (t)= (a4 + aa(l_ F3(t3_t2))-F4(t -t 3) LStst, (5)
1+ by (t-ty)+ 202 (t-ty)
F(t-t;) =1~ (—b4()t—t y |€ 2
1+ ﬁ4 e ik

4. MODEL VALIDATION, DATA SET AND DATA ANALYSIS

Figure 1-4 shows the estimated and the actual sabfighe number of faults removed for four
releases. To check the validity of the proposed eh@d to describe the software reliability
growth, it has been tested on tandem computerrilaase data set. Also we have used non linear
least square technique in SPSS software for estimatf parameters. Estimated value of
parameters of each releases are given in Tablalde P shows the comparison criterion of the four
software releases. Based on data available giv@ralmel, the performance analysis of proposed
model is measured by the four common criteria, Biasiation, RMSPE, MSE.

10

120

100 Releasel -
wn /

80

6o E _—

40 E / actual

o B / predicted
V

time
1 2 2 4 5 6 7 8 9 1011121314151617181920

Figure 1. Goodness of fit curve for Release 1

140
120
100
s0
60
40
20

Release 2 P
IE //
=]
E / actual
__g / predicted
=

uuuuu 1=

i1 2 3 4 5 6 7V 8 9 101112131415 1617 18 19

Figure 2. Goodness of fit curve for Release 2

70

50

60 -

Release 3

20

40 -
30

10

—
=
fed
—— /
o
=
[
-
E /
=
= / actual
/ predicted
/ year
1 2 3 4 5 53 7 8 =] 10 11 12

Figure 3. Goodness of fit curve for Release 3

50

£0

20

10

Release 4 P

e
/

actual

umber of faults

\

At
predictea

time
12 3 45 6 7 8 910111213141516171819

Figure 4. Goodness of fit curve for Release 4

Table 1. Parameter estimates

Release 1 2 3 4
a 110.82 124.37 62.5925 44,983
b 0.1720 0.2535 0.5684 0.2669
B 1.2046 3.7784 16.266 2.1116
o 0.00002 0.001 0.001 0.3537

11

Table 2. Comparison criteria

Comparison Release 1 Release|2 Release 3 Release 4
R° 0.989 0.995 0.996 0.994
Bias 0.4352 0.3400 0.0762 -0.0509
MSE 8.9742 6.0013 1.7849 1.0711
Variation 3.0417 2.4925 1.3931 1.0620
RMSPE 3.0727 2.5156 1.3952 1.0632

5. OPTIMAL RELEASE PLANNING PROBLEM AND SOLUTION METHOD

In developing software with multi releases one led most important decision that the software
development firm has to deal with is when to reteti®e up-graded version in the market. This
decision depends on the model used for descrithiadgailure phenomenon and the criterion used
for determining system readiness. The optimizapooblem of determining the optimal time of
software release can be formulated based on gelsyshe management. Firstly the management
may wish to determine the optimal release time shahtotal expected cost of testing in the testing
and operation phase is minimum. Secondly they nedyageliability level to be achieved by the
release time. Thirdly they may wish to determine ithlease time such that the total expected cost
of the software is minimum and reliability of theftsvare is achieved to a certain desired level.
Such a problem is known as a Bi-criteria release fproblem. For Bi-criteria release time problem
release time is determined by carrying a tradeefifveen cost and reliability. In this section wel wil
formulate such a Bi-criteria release problem foftuersion software.

5.1 Moddling Cost Function

Assume the firm has to deliver th® release of the software. Then, the cost functidhinclude
cost of removing faults during testing phase of tlerelease and cost of failure and removal of
faults after the delivery of the "'nrelease and unit cost of testing during the ntgsgihase of
release. Therefore if& is cost incurred on removing a fault duringitest phase of i release;
Cn2 is cost incurred on removing a fault after thewdel of the ff' release of software system;sC

is the testing cost per unit testing time and reses) then the total cost of testing 8fralease Gis

given by:
GO=Cam(1)+Go((8, a1 (1-Ft)-m (D) +G. (6)

Equation (6) can be re-writen as:

_ [3 (l+ﬁn) —bnt+%02'(
C.()=C.a, _1 (W e

1+ ﬁn_ —b4(t—tn_2)+}az(t—tn_2)
[an o (l_ (1_(1+,l§' " e'b“'ll()t""‘z) je 2)B

_ _ (1+ an) —b“t+%azt
sfr{ask)

+C (7)

n2

+C _t;

n3

12

5.2 Rdliability Evaluation

Reliability of software is defined as “The probdlilthat the system will not fail during
(t,t+x)(x=0) given that the latest failure occurred &t Therefore software reliability is

represented mathematically as
R(t) = R(x|t) = exp (Mt+X)-m)

5.3 Modédling Release Time Problem

An optimal bi-criterion release planning for mulifpgraded software that maximizes the reliability
and minimizes the cost of testing of the releas ithto be brought into market under the dual
constraints of budget and achieving a desired lefsedliability is formulated as:

m ax R (x /T)

m in C (T) (8)
s .t

C (T)= C g,

R(x /' T)=2 R,

T = 0,R, < 1

Alternately, we may write:

max logR (x /T)

minC (T) 9
S.t ()
C(T)<1

R(x/T)=zR,

T20,0<R,<1

<)

problem by introducingl (i =1, 2)the priority for the'# component.

where, E(T): . The above equation may be reduced to a singlectbg optimization

Thus the previously stated formula is further refalated as:

minK (T)=A,C(T)-A,logR(x /T)

s.t

_ 10
C(m)=<1 (10)
R(x/T)=2 R,

T=20,0<R, <1

5.4 Genetic Algorithm

The GA algorithm steps for solving the release piag problem is as follows (D E Goldberg
1989):

Step 1. Start.

Step 2: Generate random population of chromosomes:- Ambsome comprises genes where
each gene represents a specific attribute of thai®o. The task of designing an appropriate
chromosome representation of solutions of the prabis extremely crucial for the proper and

13

successful functioning of GA. Here a chromosoma set of modules resources consumed as part
of the total testing effort. It is initialized tamdom values within the limits of each variable.

Step 3: Evaluate the fitness of each chromosortigeipopulation:-In our release planning problem,
the fitness function is the objective of optimipati problem along with the penalties of the
constraint that is not met.

Step 4. Create a new population by repeating followirgpstuntil the new population is complete:
» [Selection] Select two parent chromosomes frompufation according to their fithess (We use
Tournament selection without replacement).

* [Crossover] With a crossover probability, cross roviee parents to form new offspring
(children). If no crossover is performed, offsprisghe exact copy of parents.

* [Mutation] With a mutation probability, mutate qgfisng at each locus (position in
chromosome).

* [Accepting] Place new offspring in the new popudati

* [Replace] Use new generated population for furgaet of the algorithm.

» [Test] If the end condition is satisfied, stop areturn the best solution in the current
population.

* [Loop] Go to step 3 for fitness evaluation.

6. NUMERICAL EXAMPLE

As an example here we choose the same data satrofeleases taken in section 4. In this data set
first, second and third release have already batenmarket. The problem formulated in section 5

determines when to stop testing the fourth reledshe software such that the cost of testing is

minimized and reliability is maximized.

In order to determine the optimal release time aptimal resource consumption for the fourth
release we make use of the estimated values giaremeters of third and fourth release given in
Table 1. With these parameter values we solvedidh@wing problem using genetic algorithm
method given in section 6. Further we assume @00, G = 150, G = 50 and it is desired that at
least 0.95 proportion of faults should be removeninf 4" release. The budget is assumed to be
10000 units and x in the reliability evaluationtéken as 7 days (i.e. 1 week). The problem is
solved using Matlab software under VC++ (6.0) cderpi

Min:
(1+ :84) j -hA(t—I3)+;ﬂz(t—t3)j

C,(H)= C41a4.(1—(1+ o |°

l+/83 by (t-t, +%g2 t-t,

1+ ,84 e D (tts)

+C42

+C,t

Max:

R(x/T) = e—(m4(t+x>—m4(t))
subject to (11)

C,(T)<10000
R(x/T)=>0.85

14

Writing an alternate form for equation (11) we have

minC.4(T)
max logR (x /T) (12)
s.t

C.(T)<1
R(x/T)=0.85

C,(T)

10000
A, =0.5and A, = 0.5we have the problem as:

Where, C,(T)= Assuming that both the objectives carry equal irtgwe i.e.

minK (T)=0.5C (T)- 0.5logR & /T)
s.t

C(T)<1000

R(x/T)= .85

The above problem is solved using GA. The parammetsed in GA evaluation are given in Table 3.
The crossover method taken is simulated binarysones (SBX), and selection criterion is
tournament selection without replacement.

Table 3. Parameters of GA

Parameter Population| Number of | Crossover | Mutation
Size Generations| Probability | Probability
Value 50 25 0.9 0.1

Upon solving the problem the optimal time for stepting the fourth release came out be 77 week
(which is 25 weeks after third release).The religbof the software was obtained as 0.88 and the
optimal minimum cost attained was 8382.72 units.

7. CONCLUSION

In this paper we have proposed an SRGM for theessiee release of the software using stochastic
differential equations. While modeling the succesgjenerations of the software we have assumed
the interaction between the faults left in the jusvious release and the new release. The stachast
process can be thought of as capturing uncertaimgggmerated by stochastic fluctuations due to
environmental conditions or so. The proposed nmalgase model is estimated on the real data set
of four releases. Then a release planning probdeformulated and solved using Genetic algorithm
which minimizes the expected software cost suligcemoving a minimum desired proportion of
faults from the new version that is to be brougho ithe market. The formulated release planning
problem helps in determining both optimal releaseetand optimal resource consumption
simultaneously. A numerical illustration is alsowey for the developed optimal release planning
problem. The model can be extended by classifyiregseverity of faults, lying in the software.
Some faults are easy to remove and some take mnoeetd leave the system. This classification
can be worked on in the future.

ACKNOWLEDGEMENT

The research work presented in this paper is stggbdwy grants to the first and second author from
University of Delhi, R&D Grant No- DRCH/R&D/2013-14155, and Delhi, India.

15

REFERENCES

[1] C. H. Lee, YT Kim and DH Park, S-Shaped SoftwaréaRéity Growth Models derived from
Stochastic Differential Equations, IIE Transactiovisl. 36, pp. 1193-1199, 2004.

[2] D. E.Goldberg, Genetic Algorithms in Search of @ptiation and Machine Learning,
Addison-Wesley, 1989.

[3] H. Pham. System Software Reliability. Springer-¥gri2006.

[4] H. Pham, X. Zhang, NHPP Software reliability andsConodels with Testing Coverage
European Journal of Operational Research, 145458432003.

[5] K. Khataneh, T. Mustafa, Software reliability madglusing soft computing technique, 1: 154-
160, 20089.

[6] L. Goel, K. Okumoto, Time-dependent error-detectiate model for software reliability and
other performance measures, IEEE Trans. on RetigliB(3): 206-211, 1979.

[7] P. K. Kapur, R. B. Garg, Software reliability grdwtnodel for an error-removal phenomenon,
Software Engineering Journal, 7(4): 291-294, 1992.

[8] P. K. Kapur, R. B. Garg, S. Kumar, ContributiondHardware and Software Reliability. World
Scientific, Singapore, 1999.

[9] P. K. Kapur, O. Singh, J. Singh, An Irregular Fluatton Based Multi up- gradation Model,
Proceeding of international Conference on Relighilinfocom Technology and Optimization
(Trends and Future Directions), Lingaya's Univgrdtaridabad, 734-741, 2010a.

[10] P. K. Kapur, A. Tandon, G. Kaur, Multi Up- gradatiGoftware reliability Model, ¥
international conference on reliability, safety datard, ICRESH, 468-474, 2010b.

[11] P. K. Kapur, S. Anand, V. S. S. Yadavalli, F Beichelt, A Geneed Software Growth
Model using Stochastic Differential Equations, Coamigation in Dependability and Quality
Management — An International Journal, Serbia, ¥0].No. 3, pp. 82-96, 2007.

[12] P. K. KapurP. C. Jha, A. K. Bardhan, Optimal allocation otitegresource for a modular
software, Asia-pacific journal of operational resba 24 (2), 1-22, 2004.

[13] S. Yamada, M. Ohba, S. Osaki, S-shaped Softwarabiltly growth models and their
applications, IEEE Trans. on Reliability, 33(4)92292, 1984.

[14] S. Yamada, M. Obha, S. Osaki, S-shaped reliabgrywth modeling for software error
detection, IEEE Trans. on Reliability, R-32,475-47883.

[15] S Yamada, Nishigaki, Kimura, A stochastic DiffeiahtEquation Model for software
Reliability assessment and its Goodness of FitA]Xg1): 1-11, 2003.

[16] S. Yamada, Y. Tamura, A Flexible Stochastic Diffét@ Equation Model in Distributed
Development Environment, European Journal of Opmerak Research, Vol. 168, pp. 143-152,
2006.

[17] Willams M, Software glitch halts Tokyo Stock Excige. InfoWorld.
http://www.infoworld.com/article/05/11/01HNtokyoexange_1.htmI?APPLICATION%20
PERFORMANCE%20MANAGEMENT. Retrieved 2008-07-30. Assited Press (2006-04-
20). Official: Software glitch, not bomb, shut arp MSNBC.
http://www.msnbc.msn.com/id/12411853/. Retrieve@&07-30, 2005.

[18] P. K. Kapur, H. Pham, A. Gupta, P. C. Jha, SoftwRetiability Assessment with OR
Applications, Springer, 2011.

16

