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Summary 
As the size of software system is large and the number of faults detected during the testing phase becomes large, so the 
change of the number of faults that are detected and removed through each debugging becomes sufficiently small 
compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the 
software fault detection process as a stochastic process with continuous-state space. In the present article, we have 
described the fault-detection process during the testing phase of successive releases of the software by applying a 
mathematical technique of stochastic differential equations (SDE) of ˆito type. Logistic rate function has been chosen to 
identify and remove the faults lying dormant in the software. We have further investigated an optimal bi-criterion 
release planning for successive software releases that maximizes the reliability and minimizes the cost of testing of the 
release that is to be brought into market under the dual constraints of budget and achieving a desired level of 
reliability. Results are supplemented by a numerical example.  
 

Key words: Successive software release planning, multi-up gradations, software reliability growth model, stochastic 
differential. 

 
1. INTRODUCTION  
 

Firms that have upgraded their software skillfully adapting the technological advancements into 
their products and processes have not only survived but prospered. Expanding high technology has 
had a significant impact on virtually all industries. Today better known software developing 
companies like Microsoft, IBM, Adobe and Wipro etc. are known for their innovation strategies and 
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frequent introduction of an advanced version of the software. This successful introduction 
contributes substantially to long-term financial success and is an effective strategy to increase 
primary demand. It strengthens the competitive position of the company in the market. But the risk 
is formidable as for most software organizations especially the development are associated with 
high cost and risks. This is because upgrading a software application is a complex task where the 
upgraded and existing system may differ in the performance, interface and functionality etc. 
although the developers upgrades the software in order to improve the software product, which also  
includes the possibility that the upgrade version will worsen. The testing team is always interested 
in knowing the bugs present in the software which will decide the utility of up-graded software. 
Safe up-gradation can improve the behavior of the system and can preserve market for company; 
however risky up-gradation can cause critical error in system. for example in October 2005, a glitch 
in a software upgrade caused trading on the Tokyo Stock Exchange to shut down for most of the 
day [17], in 1991 after changing three lines code in a signaling program which contained millions 
lines of code, the local telephone systems in California and the eastern seaboard came to stop 
[5,10]. Similar gaffes have occurred from important government systems [10] to freeware on the 
internet. Sometimes Upgrades can worsen a product and user may prefer an older version. 
 

The software failures may be due to errors, ambiguities, oversights or misinterpretations of the 
specifications that the software is supposed to satisfy, incompetence in writing code, inadequate 
testing, incorrect or unexpected usage of the software or other unforeseen problems. A plethora of 
software reliability models have been developed in the literature. Goel and Okumoto [6] proposed a 
SRGM, which describe the fault detection rate, as a non homogeneous Poisson process (NHPP). 
Later, based on this model, eminent researchers like Yamada [13], Pham [3] and Kapur [7, 18] etc. 
after bringing some new assumptions, proposed several reliability models in the literature. The K-G 
model [8, 18] can be described by following mathematical structure: 
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where ( )m t  is the cumulative number of faults removed in the software by time t; a is the finite 

number of fault content present in the software b is the constant fault detection rate and β  is the 
learning parameter. 
 

Recently Kapur et.al [10] developed a multi up-gradation reliability model, considering that 
cumulative faults in each generation depend on all previous releases and also assumes that fault is 
removed with certainty. But the proposed model is based on the assumption that the overall fault 
removal of the new release depends on the reported faults from the just previous release of the 
software and on the faults generated due to adding some new functionalities (add-ons/up-
gradations) to the existing software system. Therefore, it’s not necessary to consider the faults of all 
previous releases. This takes less time of the testing team in comparison to test the complete 
software   together (i.e. all releases together). 
 

Several NHPP based SRGMs have been developed in the literature, treating fault detection process 
during testing phase as a discrete counting process. Yamada et. al [15] asserted that if the size of the 
software system is large then the number of fault detected during the testing phase becomes large 
and the change of the number of faults which are detected and removed through each debugging 
activities becomes sufficiently small compared with the initial fault content at the beginning of the 
testing phase [18]. Therefore, in order to describe the stochastic behavior   of the fault detection 
process, a stochastic model with continuous state space can be used. Yamada, Nishigaki and 
Kimura [15], Yamda and Tamura [16]; Lee, Kim and Park [1] have studied the stochastic behavior 
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of fault detection process described by stochastic process model with continuous state space. 
Recently Kapur et.al [11] also proposed a SDE based flexile SRGM.  
 

Although testing is an efficient way to detect and remove faults so as to avoid failure of a software 
system, but exhaustive testing is impractical. Therefore, software developers need to decide when to 
stop testing the current release of the software and come up with up-graded version of the software 
system for the customers. Software release planning problems for single release software have been 
discussed and solved in different ways in literature. One of these is to find release time so that the 
total cost of software testing is minimized [12, 14, 18]. Some of the release time problems are based 
upon maximizing the reliability of software. Models that minimize the number of remaining faults 
in the software or the failure intensity also lie under this category [6, 18]. Release time problems 
have also been formulated for minimizing cost with minimum reliability requirement or 
maximizing reliability subject to budgetary constraint [12]. Bi-criterion release policy [18] that 
simultaneously maximizes reliability and minimizes cost have also been studied in literature for 
single release software. 
 

The above literature review on release planning problems do not take into account the impact of 
coming up with successive releases of a software in release planning decisions. This paper helps 
answer the question of when to stop testing the current release of the software when we have the 
dual objective of minimizing the cost and maximizing the reliability of the version that has to be 
released into the market under the constraints of budget and reliability requirement. The formulated 
problem is solved using genetic algorithm. 
 

The rest of the paper is organized as follows: Sec 1 and 2 gives the information about Notations and 
assumptions used, Sec 3 enlightens the SDE based modeling framework. In Sec 4, we have 
discussed about data set and comparison criteria used. In Sec 5 bi-criterion release planning 
problem is formulated and genetic algorithm is presented. Sec 6 gives numerical illustration of the 
formulated problem. At last, conclusion followed by Acknowledgement and References has been 
provided.  
 

Notations 
 

m(t) :  Number of faults detected during the testing time t and is a random variable. 
*( ( )) ( )E m t m t= : The mean value function or the expected number of faults detected or removed    

by time t.                                         

ia : Constant, representing the initial number of faults lying dormant in the   software when the 
testing starts for ith release;  i=1 to 4. 
a :    total fault content( 1 2 3 4a a a a a= + + + ). 

)(tf :    Probability density function. 
)(tF  :    Probability distribution function.  

( )ijF t   :  Probability distribution function associated   with each Release (i=1to 4), (j=1,2). 

1it −     :  Time for thi release (i=1 to 4). 

σ :   Positive constant that represents the magnitude of the irregular fluctuation for   faults before 
and after change point. 

ib :     fault removal rate per remaining faults.  
i=1 to 4. 

iβ : Constant parameter describing learning in the fault removal rate; i=1 to 4. 
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2. ASSUMPTIONS 
 

The proposed model is based on SDE of  ^it o     type with following assumption: 
1. The software fault detection Process is modeled as a stochastic process with a continuous state 
space. 
2. Software is subject to failure during execution caused by faults remaining in the software. 
3. Let m(t)be a random variable which presents the number of software faults detected in the 
software system up to testing timet . The faults detected in  t t+ ∆  are proportional to the mean 
number of faults remaining in the system. 
 

3. SDE BASED MODELING OF UP-GRADATIONS FOR EACH RELEASE 
             

Yamada et al [15] proposed a simplified software reliability growth model to describe the fault 
detection process during the testing phase by applying ˆitos type Stochastic Differential Equation 
(SDE) and have compared the continuous-state space SRGM with the NHPP. Lee et al. [1] used 
SDE to represent a per-fault detection rate that incorporate an irregular fluctuation instead of an 
NHPP, and consider a per-fault detection rate that depends on the testing time t. Recently, Yamada 
et al [16] have proposed a flexible Stochastic Differential Equation Model describing a fault-
detection process during the system-testing phase of the distributed development environment [18]. 
Using the hazard rate approach in deriving the mean value function of cumulative number of faults 
removed, we have: 
 

Let { ( ), 0}m t t ≥  be a random variable which represents the number of software faults detected in 
the software system upto testing time t. Suppose that m(t) takes on continuous real value. The 
NHPP models have treated the software faults detection process in the testing phase as discrete state 
space. However, if the size of the software system is large then the number of faults detected during 
the testing phase also is large  and change in the number of faults, which are corrected and removed 
through each debugging, becomes small compared with the initial fault content at the beginning of 
the testing phase. So, in order to describe the stochastic behavior of the fault detection process, we 
can use a stochastic model with continuous state space. Since the latent fault in the software system 
are detected and eliminated during the testing phase, the number of faults remaining in the software 
system gradually decreases as the testing progresses.  
 

So the corresponding differential equation is given by: 
 

( ) ( )
( ) ( )( )

1

dm t f t
a m t

dt F t
= −

−
 .     

 

It might happen that the rate is not known completely, but subject to some random environmental 
effect, so that we have: 
 

r(t) = 
( )

( ) " "
1

f t
noise

F t
+

−
                                                    

 

let ( )tγ  be a standard Guassian white noise and σ  be a positive constant representing a magnitude 
of the irregular fluctuations. So the above equation can be written as: 
 

( ) ( )
( ) ( )( )( )

1

dm t f t
t a m t

dt F t
σγ

 
= + − −   
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The above equation can be extended to the following stochastic differential equation of an 
^

ito type: 
 

( )
( ) ( )( ) ( )( )

2

( ) ( )
1 2

f t
dm t a m t dt a m t dW t

F t

σ σ
 

= − − + − −    
 

Where ( )W t   is a one-dimensional Wiener process, which is formally defined as an integration of the 
white noise ( )tγ   with respect to timet .  
 

On applying initial condition m(0)=0; we get m(t) as follows: 
 

( )( ) [1 (1 ( ( ))) ]W tm t a F t e σ−= − −                                                           
 

Using the fact that the wiener process( )w t , is a Gaussian process and has the following properties: 
 

Pr[ (0) 0] 1,w = =  
[ ( )] 0;E w t =  

' '[ ( ) ( )] min[ , ]E w t w t t t=  
 

the expected value is: 
2

* 2( ) ( ( )) [1 (1 ( ( ))) ]
t

m t E m t a F t e
σ

= = − −                                                                                    (1) 
 

Release 1 
 

The most important phase in the software development life cycle is testing. Before the release of the 
software in the market the software testing team tests the software rigorously to make sure that they 
remove maximum number of bugs in the software. Although it is not possible to remove all the 
bugs in the software practically. These finite numbers of bugs are then removed perfectly and 
mathematical equation for it is given as under: 
 

( ) ( )*
1 1 1 10m t a F t t t= < <                                                                                 (2) 

 

where, 
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1
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1
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Release 2 
 

After first release, the company has information about the reported bugs from the users, hence in 
order to attract more customers, a company adds some new functionality to the existing software 
system. Adding some new functionality to the software leads to change in the code. These new 
specifications in the code lead to increase in the fault content. Now the testing team starts testing 
the upgraded system, besides this the testing team considers dependency and effect of adding new 
functionalities with existing system. In this period when there are two versions of the software, 
while we are in the testing phase of the Release 2, we are also in the operational phase for the 
Release 1, hence the leftover fault content of the first version i.e 1 1 1(1 ( ))a F t− interacts with new 

fault detection rate i.e. 2 1( )F t t− . In addition a fraction of faults generated due to enhancement of 
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the features also get removed with this new rate. The mathematical equation of these finite numbers 
of faults removed can be given by: 
 

*
2 2 1 1 1 2 1 1 2( ) ( (1 ( )). ( ) ,m t a a F t F t t t t t= + − − ≤ ≤                                                                        (3) 

 
where: 
 

( ) 2
2 1 1
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Release 3 
 

Technological changes and stiff competition forces the software developer to add certain  more 
features to the software. Now as discussed above, the testing team starts testing the upgraded 
system and simultaneously keeps a check on the operational phase of Release 2 as well. Therefore, 
the leftover faults from Release 2 i.e. 2 2 2 1(1 ( ))a F t t− − interact with the new fault 

detection/correction rate3 2( )F t t− . Besides this the testing team removes the new faults with this 

new fault detection rate for the existing system. The mathematical equation of these finite numbers 
of faults removed can be given by: 
 

*
3 3 2 2 2 1 3 2 2 3( ) ( (1 ( )). ( ) ,m t a a F t t F t t t t t= + − − − ≤ ≤                                                                (4) 

 

where, 

( ) 2
3 2 2
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1
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3 2 ( )
3

1
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b t t t t
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  +
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The process of adding new functionalities is an ongoing process. These add-ons keep on happening 
till software is there in the market. On similar basis as earlier, the mathematical equation for 
Release 4 can be given as: 
 

*
4 4 3 3 3 2 4 3 3 4( ) ( (1 ( )). ( ) ,m t a a F t t F t t t t t= + − − − ≤ ≤                                                                 (5) 

 

( ) 2
4 3 3

4 3

1
( ) ( )4 2

4 3 ( )
4

1
( ) 1

1

b t t t t

b t t
F t t e

e

σβ
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4. MODEL VALIDATION, DATA SET AND DATA ANALYSIS 
 
Figure 1-4 shows the estimated and the actual values of the number of faults removed for four 
releases. To check the validity of the proposed model and to describe the software reliability 
growth, it has been tested on tandem computer four release data set. Also we have used non linear 
least square technique in SPSS software for estimation of parameters. Estimated value of 
parameters of each releases are given in Table 1. Table 2 shows the comparison criterion of the four 
software releases. Based on data available given in Table1, the performance analysis of proposed 
model is measured by the four common criteria, Bias, Variation, RMSPE, MSE. 
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Figure 1. Goodness of fit curve for Release 1 
 

 
 

Figure 2. Goodness of fit curve for Release 2 
 

 
 

Figure 3. Goodness of fit curve for Release 3 
 

 
 

Figure 4. Goodness of fit curve for Release 4 
 
Table 1. Parameter estimates 
 

Release 1 2 3 4 

ia  110.82 124.37 62.5925 44.983 
ib  0.1720 0.2535 0.5684 0.2669 

iβ  1.2046 3.7784 16.266 2.1116 

σ  0.00002 0.001 0.001 0.3537 
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Table 2. Comparison criteria 
 

Comparison Release 1 Release 2 Release 3 Release 4 
R2 0.989 0.995 0.996 0.994 

Bias 0.4352 0.3400 0.0762 -0.0509 
MSE 8.9742 6.0013 1.7849 1.0711 

Variation 3.0417 2.4925 1.3931 1.0620 
RMSPE 3.0727 2.5156 1.3952 1.0632 

 
5. OPTIMAL RELEASE PLANNING PROBLEM AND SOLUTION METHOD 
 
In developing software with multi releases one of the most important decision that the software 
development firm has to deal with is when to release the up-graded version in the market. This 
decision depends on the model used for describing the failure phenomenon and the criterion used 
for determining system readiness. The optimization problem of determining the optimal time of 
software release can be formulated based on goals set by the management. Firstly the management 
may wish to determine the optimal release time such that total expected cost of testing in the testing 
and operation phase is minimum. Secondly they may set a reliability level to be achieved by the 
release time. Thirdly they may wish to determine the release time such that the total expected cost 
of the software is minimum and reliability of the software is achieved to a certain desired level. 
Such a problem is known as a Bi-criteria release time problem. For Bi-criteria release time problem 
release time is determined by carrying a tradeoff between cost and reliability. In this section we will 
formulate such a Bi-criteria release problem for multi version software. 
  
5.1 Modeling Cost Function 
 
Assume the firm has to deliver the nth release of the software. Then, the cost function will include 
cost of removing faults during testing phase of the nth release and cost of failure and removal of 
faults after the delivery of the  nth  release and unit cost of testing during the testing phase of nth 
release. Therefore if Cn1  is  cost incurred on removing a fault during testing  phase of nth release; 
Cn2 is cost incurred on removing a fault after the delivery of  the nth release of software system; Cn3 
is the testing cost per unit testing time and resources, then the total cost of testing of nth release Cn is 
given by: 
 

( ) ( )( )( ) ( )( )1 2 1 1 1 3( ) 1 ;n n n n n n nn n nC t C m t C a a F t m t C t− − −= + + − − +        (6) 

 

Equation (6) can be re-writen as: 
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5.2 Reliability Evaluation 
 

Reliability of software is defined as “The probability that the system will not fail during 
( , ) ( 0)t t x x+ ≥  given that the latest failure occurred at t”. Therefore software reliability is 
represented mathematically as 

( )( ) ( )( ) ( | ) exp m t x m tR t R x t − + −≡ =  
 

5.3 Modeling Release Time Problem 
 

An optimal bi-criterion release planning for multi-upgraded software that maximizes the reliability 
and minimizes the cost of testing of the release that it to be brought into market under the dual 
constraints of budget and achieving a desired level of reliability is formulated as: 
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Alternately, we may write: 
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where, 
( )

( )
B

C T
C T

C
= . The above equation may be reduced to a single objective optimization 

problem by introducing ( 1,2)i iλ = the priority for the itℎ  component. 
 

Thus the previously stated formula is further reformulated as:  
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5.4 Genetic Algorithm 
 
The GA algorithm steps for solving the release planning problem is as follows (D E Goldberg 
1989):  
Step 1:   Start. 
Step 2: Generate random population of chromosomes:- A chromosome comprises genes where 
each gene represents a specific attribute of the solution. The task of designing an appropriate 
chromosome representation of solutions of the problem is extremely crucial for the proper and 
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successful functioning of GA. Here a chromosome is a set of modules resources consumed as part 
of the total testing effort. It is initialized to random values within the limits of each variable. 
Step 3: Evaluate the fitness of each chromosome in the population:-In our release planning problem, 
the fitness function is the objective of optimization problem along with the penalties of the 
constraint that is not met. 
Step 4:  Create a new population by repeating following steps until the new population is complete: 
• [Selection] Select two parent chromosomes from a population according to their fitness (We use 
Tournament selection without replacement). 
• [Crossover] With a crossover probability, cross over the parents to form new offspring 
(children). If no crossover is performed, offspring is the exact copy of parents. 
• [Mutation] With a mutation probability, mutate offspring at each locus (position in 
chromosome). 
• [Accepting] Place new offspring in the new population. 
• [Replace] Use new generated population for further part of the algorithm. 
• [Test] If the end condition is satisfied, stop and return the best solution in the current 
population. 
• [Loop] Go to step 3 for fitness evaluation. 
 

6. NUMERICAL EXAMPLE 
 

As an example here we choose the same data set of four releases taken in section 4. In this data set 
first, second and third release have already been into market. The problem formulated in section 5 
determines when to stop testing the fourth release of the software such that the cost of testing is 
minimized and reliability is maximized. 
 

In order to determine the optimal release time and optimal resource consumption for the fourth 
release we make use of the estimated values of the parameters of third and fourth release given in 
Table 1. With these parameter values we solved the following problem using genetic algorithm 
method given in section 6. Further we assume C1 = 100, C2 = 150, C3 = 50 and it is desired that at 
least 0.95 proportion of faults should be removed from 4th release. The budget is assumed to be 
10000 units and x in the reliability evaluation is taken as 7 days (i.e. 1 week).  The problem is 
solved using Matlab software under VC++ (6.0) compiler.   
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Writing an alternate form for equation (11) we have: 
 

4

4

m in ( )

m a x lo g ( / )

.

( ) 1

( / ) 0 .8 5

C T

R x T

s t

C T

R x T

≤
≥

                                                                                       (12)                                    

 

Where, 4
4
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C T =  Assuming that both the objectives carry equal importance i.e. 

1 20.5 0.5andλ λ= =  we have the problem as: 
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The above problem is solved using GA. The parameters used in GA evaluation are given in Table 3. 
The crossover method taken is simulated binary crossover (SBX), and selection criterion is 
tournament selection without replacement. 
 

Table 3. Parameters of GA 
 

Parameter 
Population 

Size 
Number of 
Generations 

Crossover 
Probability 

Mutation 
Probability 

Value 50 25 0.9 0.1 
 

Upon solving the problem the optimal time for stop testing the fourth release came out be 77 week 
(which is 25 weeks after third release).The reliability of the software was obtained as 0.88 and the 
optimal minimum cost attained was 8382.72 units. 
 
7. CONCLUSION 
 
In this paper we have proposed an SRGM for the successive release of the software using stochastic 
differential equations. While modeling the successive generations of the software we have assumed 
the interaction between the faults left in the just previous release and the new release. The stochastic 
process can be thought of as capturing uncertainties generated by stochastic fluctuations due to 
environmental conditions or so. The proposed multi release model is estimated on the real data set 
of four releases. Then a release planning problem is formulated and solved using Genetic algorithm 
which minimizes the expected software cost subject to removing a minimum desired proportion of 
faults from the new version that is to be brought into the market. The formulated release planning 
problem helps in determining both optimal release time and optimal resource consumption 
simultaneously. A numerical illustration is also given for the developed optimal release planning 
problem. The model can be extended by classifying the severity of faults, lying in the software. 
Some faults are easy to remove and some take more time to leave the system. This classification 
can be worked on in the future.  
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